3.9.29 \(\int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{3/2}} \, dx\) [829]

3.9.29.1 Optimal result
3.9.29.2 Mathematica [A] (verified)
3.9.29.3 Rubi [A] (verified)
3.9.29.4 Maple [A] (verified)
3.9.29.5 Fricas [C] (verification not implemented)
3.9.29.6 Sympy [F(-1)]
3.9.29.7 Maxima [F]
3.9.29.8 Giac [F]
3.9.29.9 Mupad [F(-1)]

3.9.29.1 Optimal result

Integrand size = 31, antiderivative size = 116 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{3/2}} \, dx=\frac {2 A \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b d \sqrt {b \cos (c+d x)}}+\frac {2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b^2 d} \]

output
2/3*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d* 
x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/b/d/(b*cos(d*x+c))^(1/2)+2/3*B*sin(d*x+ 
c)*(b*cos(d*x+c))^(1/2)/b^2/d+2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x 
+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b^2/d/c 
os(d*x+c)^(1/2)
 
3.9.29.2 Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.65 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{3/2}} \, dx=\frac {2 \cos ^{\frac {3}{2}}(c+d x) \left (3 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B \left (\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} \sin (c+d x)\right )\right )}{3 d (b \cos (c+d x))^{3/2}} \]

input
Integrate[(Cos[c + d*x]^2*(A + B*Cos[c + d*x]))/(b*Cos[c + d*x])^(3/2),x]
 
output
(2*Cos[c + d*x]^(3/2)*(3*A*EllipticE[(c + d*x)/2, 2] + B*(EllipticF[(c + d 
*x)/2, 2] + Sqrt[Cos[c + d*x]]*Sin[c + d*x])))/(3*d*(b*Cos[c + d*x])^(3/2) 
)
 
3.9.29.3 Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.03, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {2030, 3042, 3227, 3042, 3115, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {\int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x))dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{b^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {A \int \sqrt {b \cos (c+d x)}dx+\frac {B \int (b \cos (c+d x))^{3/2}dx}{b}}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {B \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx}{b}}{b^2}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {A \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {B \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \cos (c+d x)}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {B \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}}{b^2}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {\frac {A \sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)}}+\frac {B \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A \sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)}}+\frac {B \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}}{b^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {B \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}}{b^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )}{b}}{b^2}\)

input
Int[(Cos[c + d*x]^2*(A + B*Cos[c + d*x]))/(b*Cos[c + d*x])^(3/2),x]
 
output
((2*A*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x] 
]) + (B*((2*b^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b* 
Cos[c + d*x]]) + (2*b*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/b)/b^2
 

3.9.29.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
3.9.29.4 Maple [A] (verified)

Time = 5.58 (sec) , antiderivative size = 240, normalized size of antiderivative = 2.07

method result size
default \(\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-4 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 b \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(240\)
parts \(\frac {2 A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{b \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}-\frac {2 B \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 b \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(336\)

input
int(cos(d*x+c)^2*(A+B*cos(d*x+c))/(cos(d*x+c)*b)^(3/2),x,method=_RETURNVER 
BOSE)
 
output
2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)/b*(-4*B*cos( 
1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si 
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*cos( 
1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin( 
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*si 
n(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*cos 
(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d
 
3.9.29.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.22 \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{3/2}} \, dx=\frac {-i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} A \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} A \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} B \sin \left (d x + c\right )}{3 \, b^{2} d} \]

input
integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(3/2),x, algorithm= 
"fricas")
 
output
1/3*(-I*sqrt(2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin( 
d*x + c)) + I*sqrt(2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) - 
I*sin(d*x + c)) + 3*I*sqrt(2)*A*sqrt(b)*weierstrassZeta(-4, 0, weierstrass 
PInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*A*sqrt(b)*we 
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + 
 c))) + 2*sqrt(b*cos(d*x + c))*B*sin(d*x + c))/(b^2*d)
 
3.9.29.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**2*(A+B*cos(d*x+c))/(b*cos(d*x+c))**(3/2),x)
 
output
Timed out
 
3.9.29.7 Maxima [F]

\[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(3/2),x, algorithm= 
"maxima")
 
output
integrate((B*cos(d*x + c) + A)*cos(d*x + c)^2/(b*cos(d*x + c))^(3/2), x)
 
3.9.29.8 Giac [F]

\[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(3/2),x, algorithm= 
"giac")
 
output
integrate((B*cos(d*x + c) + A)*cos(d*x + c)^2/(b*cos(d*x + c))^(3/2), x)
 
3.9.29.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((cos(c + d*x)^2*(A + B*cos(c + d*x)))/(b*cos(c + d*x))^(3/2),x)
 
output
int((cos(c + d*x)^2*(A + B*cos(c + d*x)))/(b*cos(c + d*x))^(3/2), x)